Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bose, Arpita (Ed.)ABSTRACT Leptothrix ochracea creates distinctive iron-mineralized mats that carpet streams and wetlands. Easily recognized by its iron-mineralized sheaths, L. ochracea was one of the first microorganisms described in the 1800s. Yet it has never been isolated and does not have a complete genome sequence available, so key questions about its physiology remain unresolved. It is debated whether iron oxidation can be used for energy or growth and if L. ochracea is an autotroph, heterotroph, or mixotroph. To address these issues, we sampled L. ochracea-rich mats from three of its typical environments (a stream, wetlands, and a drainage channel) and reconstructed nine high-quality genomes of L. ochracea from metagenomes. These genomes contain iron oxidase genes cyc2 andmtoA, showing that L. ochracea has the potential to conserve energy from iron oxidation. Sox genes confer potential to oxidize sulfur for energy. There are genes for both carbon fixation (RuBisCO) and utilization of sugars and organic acids (acetate, lactate, and formate). In silico stoichiometric metabolic models further demonstrated the potential for growth using sugars and organic acids. Metatranscriptomes showed a high expression of genes for iron oxidation; aerobic respiration; and utilization of lactate, acetate, and sugars, as well as RuBisCO, supporting mixotrophic growth in the environment. In summary, our results suggest that L. ochracea has substantial metabolic flexibility. It is adapted to iron-rich, organic carbon-containing wetland niches, where it can thrive as a mixotrophic iron oxidizer by utilizing both iron oxidation and organics for energy generation and both inorganic and organic carbon for cell and sheath production. IMPORTANCEWinogradsky's observations of L. ochracea led him to propose autotrophic iron oxidation as a new microbial metabolism, following his work on autotrophic sulfur-oxidizers. While much culture-based research has ensued, isolation proved elusive, so most work on L. ochracea has been based in the environment and in microcosms. Meanwhile, the autotrophic Gallionella became the model for freshwater microbial iron oxidation, while heterotrophic and mixotrophic iron oxidation is not well-studied. Ecological studies have shown that Leptothrix overtakes Gallionella when dissolved organic carbon content increases, demonstrating distinct niches. This study presents the first near-complete genomes of L. ochracea, which share some features with autotrophic iron oxidizers, while also incorporating heterotrophic metabolisms. These genome, metabolic modeling, and transcriptome results give us a detailed metabolic picture of how the organism may combine lithoautotrophy with organoheterotrophy to promote Fe oxidation and C cycling and drive many biogeochemical processes resulting from microbial growth and iron oxyhydroxide formation in wetlands.more » « less
-
Global sea-level rise is transforming coastal ecosystems, especially freshwater wetlands, in part due to increased episodic or chronic saltwater exposure, leading to shifts in biogeochemistry, plant- and microbial communities, as well as ecological services. Yet, it is still difficult to predict how soil microbial communities respond to the saltwater exposure because of poorly understood microbial sensitivity within complex wetland soil microbial communities, as well as the high spatial and temporal heterogeneity of wetland soils and saltwater exposure. To address this, we first conducted a two-year survey of microbial community structure and bottom water chemistry in submerged surface soils from 14 wetland sites across the Florida Everglades. We identified ecosystem-specific microbial biomarker taxa primarily associated with variation in salinity. Bacterial, archaeal and fungal community composition differed between freshwater, mangrove, and marine seagrass meadow sites, irrespective of soil type or season. Especially, methanogens, putative denitrifying methanotrophs and sulfate reducers shifted in relative abundance and/or composition between wetland types. Methanogens and putative denitrifying methanotrophs declined in relative abundance from freshwater to marine wetlands, whereas sulfate reducers showed the opposite trend. A four-year experimental simulation of saltwater intrusion in a pristine freshwater site and a previously saltwater-impacted site corroborated the highest sensitivity and relative increase of sulfate reducers, as well as taxon-specific sensitivity of methanogens, in response to continuously pulsing of saltwater treatment. Collectively, these results suggest that besides increased salinity, saltwater-mediated increased sulfate availability leads to displacement of methanogens by sulfate reducers even at low or temporal salt exposure. These changes of microbial composition could affect organic matter degradation pathways in coastal freshwater wetlands exposed to sea-level rise, with potential consequences, such as loss of stored soil organic carbon.more » « less
An official website of the United States government
